TY - JOUR
AB - Entanglement, according to Erwin Schroedinger the essence of quantum mechanics, is at the heart of the Einstein-Podolsky-Rosen paradox and of the so called quantum-nonlocality - the fact that a local realistic explanation of quantum mechanics is not possible as quantitatively expressed by violation of Bell's inequalities. Even as entanglement gains increasing importance in most quantum information processing protocols, its conceptual foundation is still widely debated. Among the open questions are: What is the conceptual meaning of quantum entanglement? What are the most general constraints imposed by local realism? Which general quantum states violate these constraints? Developing Schroedinger's ideas in an information-theoretic context we suggest that a natural understanding of quantum entanglement results when one accepts (1) that the amount of information per elementary system is finite and (2) that the information in a composite system resides more in the correlations than in properties of individuals. The quantitative formulation of these ideas leads to a rather natural criterion of quantum entanglement. Independently, extending Bell's original ideas, we obtain a single general Bell inequality that summarizes all possible constraints imposed by local realism on the correlations for a multi-particle system. Violation of the general Bell inequality results in an independent general criterion for quantum entanglement. Most importantly, the two criteria agree in essence, though the two approaches are conceptually very different. This concurrence strongly supports the information-theoretic interpretation of quantum entanglement and of quantum physics in general
AU - Brukner, Č.
AU - Zukowski, M.
AU - Zeilinger, A.
DA - 2001/06/20/
JF - New Advances in Physics
PY - 2001
SE - 2001/06/20/
TI - The essence of entanglement
UR - http://xxx.lanl.gov/abs/quant-ph/0106119
ER -